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Abstract: Quantitative analysis of the peripapillary retinal layers and capillary plexuses from
optical coherence tomography (OCT) and OCT angiography images depend on two
segmentation tasks — delineating the boundary of the optic disc and delineating the boundaries
between retinal layers. Here, we present a method combining a neural network and graph
search to perform these two tasks. A comparison of this novel method’s segmentation of the
disc boundary showed good agreement with the ground truth, achieving an overall Dice
similarity coefficient of 0.91 + 0.04 in healthy and glaucomatous eyes. The absolute error of
retinal layer boundaries segmentation in the same cases was 4.10 £ 1.25 pm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) provides noninvasive, structural images of eye fundus
tissue based on interferometric analysis of low-coherence light [1]. By considering blood flow
induced temporal variation in the signal garnered from OCT, vasculature can be distinguished
from static tissue. There are many versions of this technique; collectively they are termed OCT
angiography (OCTA) [2-8]. Measurement of retinal layer thickness from structural OCT and
analysis of capillary plexuses from OCTA can both help clinical diagnosis and early detection
of glaucoma, which is the leading cause of irreversible blindness globally [9—13]. But the
clinical utility of such measurements requires accuracy and precision, both of which depend
critically on the segmentation of both the optic disc boundary and peripapillary retinal
boundaries. Segmentation of these anatomical regions is, then, a critically important task.

Since manual segmentation is time-consuming, several methods to segment the optic disc
and peripapillary retinal boundaries have been proposed [14-22]. For peripapillary retinal
boundaries segmentation, graph search algorithms based on intensity differences between
anatomical slabs from structural OCT have been used frequently and show good results.
Antony et al. proposed a 3D graph search method for the segmentation of both the optic disc
boundary and the peripapillary retinal boundaries [16]. Zang et al. proposed a method which
detected the optic disc boundary and segmented peripapillary retinal boundaries separately
using a dynamic-programming based graph search algorithm [20]. Gao ef al. proposed a
method which combined the active appearance model and graph search to segment the
peripapillary retinal boundaries [21]. Yu et al. proposed a shared-hole graph search method
which first segments the optic disc boundary and then segments the peripapillary retinal
boundaries [22]. However, speckle noise and vessel shadows both seriously detrimentally
impact segmentation accuracy based just on graph search.

Nowadays, deep learning plays an important role in medical image processing and several
learning-based methods exist for segmentation of OCT data [23-28]. Devalla et al. proposed a
dilated-residual U-Net to segment optic nerve head tissues such as the lamina cribrosa, choroid,
sclera and so on [25]. But the peripapillary retinal boundaries were not segmented in this study.
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Kugelman et al. proposed a retinal boundary segmentation method for macular OCT based on a
combination of recurrent neural networks and graph search [26]. However, the anatomical
disruption caused by the optic disc makes peripapillary retinal boundaries segmentation much
more challenging than the macular region. Networks trained on macular OCT scans therefore
may not generalize well to the peripapillary region.

In this study, we propose an automated segmentation method for optic disc boundary
detection and peripapillary retina layer segmentation. We designed two separate neural
networks and trained one each to segment the optic disc boundary and peripapillary retinal
layers. The final peripapillary retinal boundaries were calculated based on the prediction and
gradient maps using a multi-weights graph search algorithm.

2. Methods
2.1 Patient recruitment and data acquisition

In this study, 46 healthy and 63 participants with glaucoma were recruited and tested at the
Casey Eye Institute, Oregon Health & Science University. The diagnoses of all the participants
were made by an expert clinical examination. The participants were enrolled after informed
consent in accordance with an Institutional Review Board approved protocol. The study was
conducted in compliance with the Declaration of Helsinki.

The peripapillary retinal area was scanned using a commercial 70-kHz spectral-domain
OCT system (Avanti RTVue-XR, Optovue Inc) with 840-nm central wavelength. The scan
regions were 4.5 x 4.5 mm and 1.6 mm in depth (304 x 304 x 640 pixels) centered on the optic
disc. Two repeated B-frames were captured at each line-scan location. The blood flow of each
line-scan location was detected using the split-spectrum amplitude-decorrelation angiography
(SSADA) algorithm based on the speckle variation between two repeated B-frames [2,29]. The
OCT structural images were obtained by averaging two repeated B-frames. For each data set,
two volumetric raster scans (one x-fast scan and one y-fast scan) were registered and merged
through an orthogonal registration algorithm to reduce motion artifacts [30].

In each OCT data set, the following layers or boundaries are anatomically important: inner
limiting membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform
layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL),
ellipsoid zone (EZ), retinal pigment epithelium (RPE), and Bruch’s membrane (BM). In this
study, seven boundaries (Vitreous/ILM, NFL/GCL, IPL/INL, INL/OPL, OPL/ONL, ONL/EZ,
and RPE/BM) were manually segmented by a human grader.

2.2 Neural network designing

The neural network used in this study was designed based on the architecture of the classic
U-Net [31,32] (Fig. 1). Three max-pooling and (de)convolution layers were separately used in
the down-sampling and up-sampling towers. Because each peripapillary retinal layer cannot be
identified based just on the upper and lower boundaries, the global position in the whole retina
is also an important feature. In order to capture both the relative and absolute location of each
peripapillary retinal layer, a 3 X 3 normal and atrous-convolution layer [33,34] were cascaded
together in each layer of the down-sampling and up-sampling towers. In addition, a global
block was also designed to capture the local and global information before the final
classification layer. The batch normalization [35] and exponential linear unit (ELU) function
[36] were used after each convolution layer (except the output layer) to improve the stability of
the final classification.

The Dice similarity coefficient (DSC) for each channel of the output map was used in the
loss function:
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where N, is the number of final classes, eps is set to 1 x 107> to keep the division workable, and
Out, and Lab, are the n™ channels of the output map and corresponding label manually
segmented by a certified grader. Stochastic gradient descent with Nesterov momentum
(momentum = 0.9) was used to optimize the variables in the neural network to find the
minimum value of the loss function [37]. The learning rate was halved if the value of the loss
function kept increasing over three consecutive training steps (starting from an initial learning
rate of 0.1). The same network architecture was used for the segmentation of both the optic disc
and peripapillary retinal boundaries.

The designed neural network was trained and tested in Python 3.6, and other image
processing was performed in MATLAB 2018b. The workstation used in this study has an Intel
(R) Core (TM) i7-8700K CPU @ 3.70GHz, 64.0 GB RAM and NVIDIA RTX 2080 GPU.
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Fig. 1. The architecture of the designed neural network.
2.3 Optic disc boundary segmentation

The major challenge of the peripapillary retinal boundaries segmentation is the special structure
of the optic disc, which is totally different from the surrounding retina and varies significantly
between eyes. Because the en face shape of optic disc is usually approximately circular, 180
diametral B-frames were generated based on the detected disc center, thereby ensuring the
images used to train the network in optic disc segmentation algorithm were similar.

2.3.1 Optic disc center detection

The optic disc center is needed for sampling of the 180 diametral B-frames. However, the optic
disc is not always aligned at the exact center of the OCT data volume, and can be far away from
the image center (Fig. 2(A)). Therefore, we designed an automated localization algorithm for
the optic disc that leverages the lack of anatomical layers found in the disk region in order to
determine its center. The internal, hierarchical structure of anatomic layers can manifest clearly
in OCT images after proper image manipulation. To elucidate these features within our data
volumes we designed a convolution kernel Ay to generate a gradient map Gy which
demarcates the three strongest retinal layer gradients (Fig. 2(C) and 2(F)):

Ghie = ConV(Bnorma] s khie) (2)
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where Conv(*) is the convolution, Byoma i €ach normal B-frame and ke is 2 5 x 5 kernel with

1. 1. . . .
T in the first two rows and s in the last three rows. The binary image of each gradient map

was then generated by extracting the layers with intensity above an empirically determined
threshhold (Fig. 2(D) and 2(G)). Because it lacks internal hierarchical structure, only one layer
was detected inside the optic disc (Fig. 2(G)). After all the volumetric binary images were
generated, we construct an en face accumulation image by summing the separate binary images
(Fig. 2(H)). This leaves the region of the optic disc darker since it retains only one layer after
binarization (instead of three), and so obtains lower values in the accumulation image. A binary
en face image I, was then generated based on the center region /. (red box in Fig. 2(H)) of the

accumulation image to improve the detection stability. This binarization process was defined
as:

1 1-17,(x,y)>13xmean(1-1,)
0 otherwise

1 (v.3) ={ 6

The optic disc center was then calculated as the geometric center of the binary image just
obtained. Though some large vessels might still be visible in the binary image due to the vessel
shadows, the calculation of the optic disc center is unaffected due to the approximate rotational

—
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—

Fig. 2. Diagram of the optic disc center detection. (A) En face average projection of the
volumetric OCT. The detected optic disc region is covered by green. The red point is the
detected disc center. (B) The normal B-frame corresponding to the position of the left blue line,
which is outside of the disc. (C) The gradient map of the B-frame in (B). (D) The binary image of
the layers with highest gradient intensity in (C). (E) The normal B-frame corresponding to the
position of the right blue line, which is inside the disc. (F) The gradient map of the B-frame in
(E). (G) The binary image of the layers with highest gradient intensity in (F). Note the single
band of pixels in the disc region. (H) En face accumulation projection based on the volumetric
gradient map. The center region with two thirds of the image length is indicated by the red box.

2.3.2 Diametral B-frames generation and disc boundary segmentation

The 180 diametral B-frames and corresponding labels were then generated from 1° to 180°
based on the detected optic disc center and resized to 416 % 416 (416 being the pixel length of
the image diagonal). After this we cropped the images for network training (Fig. 3). Because
the optic disc boundary is defined as the Bruch’s membrane opening (BMO) [38], the area of
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EZ + RPE (cyan region in Fig. 3(C)) and the remaining B-frame area constituted the input
labels for the disc boundary neural network. The initial en face optic disc binary image was then
obtained based on the 180 prediction maps from the trained network through a coordinate
transformation. The output region so obtained is rough so we performed a multi-angle edge
smoothing process on the initial boundary consisting of two steps. First, the bumpy artifacts
were removed through a morphological opening process. After that, the convex hull of the disc
region was calculated to make sure the final disc region was convex (Fig. 4).

Fig. 3. Generation of diametral B-frames. (A) En face average projection of a volumetric OCT
scan from a glaucoma patient. The green point is the automatically detected optic disc center.
The two red lines with angle and arrows indicate planes along with the diametral B-frames are
generated. (B) The diametral B-frame corresponding to the red line at 1°. The green line
corresponds to the optic disc center (green point) in (A). The region between two blue lines is the
optic disc. The peripapillary retina is to the left and right of the blue lines. (C) The generated
diametral B-frame corresponding to the red line at 45° in (A). The manually segmented EZ +
RPE are colored in cyan.

Fig. 4. Smoothing process of the initial optic disc boundary. (A) Volumetric prediction maps of
EZ + RPE. (B) Initial optic disc region based on the en face projection of (A). (C) The bump
artifacts were removed using morphological opening. (D) The final optic disc region after the
convex hull calculation.

2.4 Peripapillary retinal layer segmentation

The training data set for the peripapillary retinal boundaries segmentation network was
obtained based on the manually delineated internal boundaries between retinal layers. In order
to provide extra features for learning and help to mitigate errors due to layer distortion and
vessel shadows near the disc we organized the input data as the combination of several adjacent
B-frames. Therefore, each input image in the training data set contained channels with size 416
x 304 x 5, from a combination of five adjacent B-frames (Fig. 5(A)). Each input label in the
training data set was calculated based on the manually segmented retinal layers of the middle
(i.e., third, marked by red arrow in Fig. 5(A)) B-frame of the corresponding image. The size of
each input label was 416 x 304 x 7, with the first channel corresponding to the area outside the
retina. The other channels are the regions of the six main retinal layers (Fig. 5(C)).
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Fig. 5. The image and corresponding label in the training data set for the designed neural
network for peripapillary retinal boundaries segmentation. (A) Image constructed from five
adjacent B-frames. (B) Colormap of the peripapillary retinal layers based on the manually
delineated boundaries of the B-frame marked by red arrow in (A). Six major layers are shown:
NFL (red), IPL (green), INL (yellow), OPL (blue), ONL (purple), and EZ + RPE (cyan). (C) The
seven channel labels based on the manual delineation of the third channel of (A).

After the trained neural network obtained initial boundaries B, based on the prediction
maps of each B-frames in the volumetric OCT, the final eight boundaries were obtained by
refining the initial boundaries using a multi-weights graph search (Fig. 6). (The EZ/RPE
boundary was not segmented by the neural network, but we added it at this step in order to
obtain a complete segmentation.) To improve the accuracy and stability of this graph search,
weights were calculated not just based on the search direction but also based on the vertical
distance to initial boundaries. The multi-weights graph search was defined as

P(x,z) = argmin(P(x -1,z +d (1)) + G(x, ) X (W(i) + |2 + d (i) = B,y (x = 1) ¥ 0.1)
i=[1,2,..,n] d=[-3,-2,-1,0,1,2,3] 4)
w=[1.4,12,1.0,1.0,1.0,1.2,1.4]

where P(x,z) is the cost of the shortest path from the first column to the coordinate (x,z) in x™
column, G(x,z) is the pixel value in the corresponding gradient map (examples in Fig. 2(C) and
2(F)), z+d(i) is the row of one of the n neighboring pixels in (x-1)™ column, and w(i) is the

empirically determined weight assigned to each search direction.

Near the optic disc, there is large variation in the vitreous/ILM boundary location.
Furthermore, in this region we require the boundaries converge to the BMO. To achieve these
goals, we modified the search weights in this region (between the orange and blue lines in Fig.
6(B)) according to Egs. (5) and (6):

For Vitreous/ILM:
n=21 d=[-10,-9,...,0,...,9,10] )
w=[1.8,1.8,...,1.8,1.4,1.2,1.0,1.0,1.0,1.2,1.4,1.8,...,1.8,1.8]
For the NFL/GCL, IPL/INL, INL/OPL, OPL/ONL, and ONL/EZ:
n=17 d=[-8,-17,..,0,..,7,8]
(6)

w=[14,14,12,12,1.1,1.1,1.0,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8].

The searching order of the eight boundaries was RPE/BM — Vitreous/ILM — NFL/GCL —
ONL/EZ — INL/IPL — OPL/ONL — IPL/INL — EZ/RPE, and the search region included the
initial estimate plus the six pixels above and below. For a boundary without an initial value, the
search area was changed to [Byy. - 6, By * 6], in which B, was the just segmented boundary
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of the last B-frame. In addition, the area of each boundary did not exceed the region based on
the associated slab’s upper and lower limit. For the region inside the optic disc, just the top and
bottom boundaries were segmented based on the binary image of the whole retina. These
weights and parameters were empirically chosen just based on the training data set and will be
used in segmentation of future data. After the boundary segmentation, each boundary was
smoothed by a mean filter with size 5 x 5.

Vitreous/ILM
/ NFL/GCL
: / IPL/INL

\ INL/OPL
| opL/IONL
ONL/EZ
EZ/RPE

RPE/BM

Fig. 6. The initial boundaries were refined by a multi-weights graph search. (A) The prediction
map generated from the trained neural network. (B) The initial boundaries based on the
prediction map in (A). The optic disc region, as automatically determined by the algorithm, is
indicated by the solid light blue vertical lines. The region between these lines and the orange
dotted lines is where refined weights in the graph search are used to ensure convergence to the
BMO. This region covers one quarter of the distance between the edge of the image and the optic
disc. (C) The final boundaries after the multi-weights graph search and smoothing.

3. Results

In this study, 78 eyes from 46 healthy individuals and 104 eyes from 63 glaucoma patients were
scanned. Among the data set, 30 scan volumes each from different healthy participants and
glaucoma patients were chosen for the training data set (10800 inputs for optic disc boundary
segmentation and 18000 inputs for peripapillary retinal boundaries segmentation). The training
batch size was set to 4. Among the 4 inputs, two of them were randomly chosen from the
glaucoma training data and another two inputs were randomly chosen from the normal training
data. The trained model was obtained after 18000 training steps. The rest of the data set was
used to test the performance of this segmentation method. In addition, there was no overlap
between the cases used in the training and testing data set.

3.1 Qualitative analysis

In Fig. 7, the segmented optic disc is shown in green. The region corresponds to the area
expected from visual inspection.
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Fig. 7. The segmentation results of the optic disc boundary. In each part, the optic disc or its
boundary is shown in green. (A) The en face average projection of the volumetric OCT scanned
from a healthy participant. (B) The bottom-to-top 3D view of the volumetric OCT of (A). (C)
The en face average projection of the volumetric OCT scanned from a glaucoma patient. (D) The
bottom-to-top 3D view of the volumetric OCT of (C).

The segmented boundaries of peripapillary retinal from a healthy participant is shown in
Fig. 8. In addition, the anatomical structures outside and inside the optic disc are clearly shown
in Figs. 8(B) and 8(C). The superficial vascular complex (SVC), defined as the inner 80% of
ganglion cell complex (GCC), includes all structures between the ILM and IPL/INL border
[13,39]. An en face SVC angiogram was generated by projecting the maximum decorrelation
within the same slab [40—42]. In addition, the segmentation results based on the OCT data
scanned from a glaucoma patient are shown in Fig. 9. The angiogram of the NFL slab, which is
critically important to the detection and diagnosis of glaucoma, was defined as the radial
peripapillary capillary plexus (RPCP). Notably, the glauomatous wedge shaped defect can be
visualized on both RPCP angiogram (Fig. 9(B)) and NFL thickness map (Fig. 9(C)) [9-13].
The superotemporal area with capillary loss could also clearly be seen in the RPCP (marked by
a green line in Fig. 9(B)).
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Fig. 8. Segmentation results of the left eye of a healthy participant. (A) The en face average
projection, with the segmented optic disc region overlaid in green. (B) The 3D anatomical map
of the entire volumetric OCT based on the segmented peripapillary retinal layers. (C) Cutaway
from (B) at the blue line location in (A), clearly showing the anatomic structure inside the disc.
(D) En face SVC angiogram based on the segmented boundaries. (E) B-frame corresponding to
the red line in (A) with segmented peripapillary retinal boundaries. (F) Corresponding image for
the blue line in (A). The slab boundaries are, from top to bottom, the Vitreous/ILM (red),
NFL/GCL (green), IPL/INL (yellow), INL/OPL (blue), OPL/ONL (magenta), ONL/EZ (cyan),
EZ/RPE (red) and RPE/BM (blue).
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Fig. 9. Segmentation results for the right eye of a glaucoma patient. (A) En face average
projection image, with the segmented optic disc region overlaid in green. (B) En face RPCP
angiogram based on the segmented boundaries. Capillary loss in the superotemporal area is
marked with a green line. (C) NFL thickness map based on the segmented peripapillary retinal
boundaries. (D) B-frame corresponding to the red line in (A) with segmented peripapillary
retinal boundaries. (E) Corresponding image for the blue line in (A). (F) The 3D anatomical map
of whole volumetric OCT based on the segmented peripapillary retinal layers. (G) Cutaway
from (F) at the blue line location in (A), clearly showing anatomic structure inside the optic disc.
The slab boundaries are, from top to bottom, the Vitreous/ILM (red), NFL/GCL (green),
IPL/INL (yellow), INL/OPL (blue), OPL/ONL (magenta), ONL/EZ (cyan), EZ/RPE (red) and
RPE/BM (blue).

3.2 Quantitative analysis

We tested 21960 diametral B-frames generated from 122 volumetric OCT scans to assess the
performance of the neural network used in the optic disc boundary detection. The mean +
standard deviation of the testing loss (Eq. (1) between the predication maps and ground truth
labels was 0.033 + 0.028. We also calculated the DSC between the predicted final disc
boundaries and corresponding manual delineations. The DSC was 0.92 + 0.03 in normal and
0.91 £ 0.05 in glaucomatous eyes.

For the performance of peripapillary retinal boundaries segmentation, we calculated the
absolute errors (um, based on 3.125 pm/pixel) of the peripapillary retinal boundaries between
our method and manual delineation (Table 1). The overall absolute errors were similar for both
healthy and glaucomatous eyes. Because the NFL thickness is a critical feature for the detection
and diagnosis of glaucoma, the NFL thickness based on our method was calculated and
compared with the gold standard based on the manual delineation. The mean + standard
deviation value of the NFL thickness differences (manual minus automated) was 2.14 + 1.45
pum in glaucomatous and 1.67 + 1.83 um in normal eyes.
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Table 1. Segmentation accuracy of our method

Boundaries Healthy (Mean + Std; um) ~ Glaucoma (Mean + Std; pm)
Vitreous/ILM 2.83+1.12 3.25+£0.92
NFL/GCL 6.42 +0.36 6.64+0.27
IPL/INL 5.59+0.34 5.70£0.23
INL/OPL 4.93 £0.66 4.97+047
OPL/ONL 4.59+0.90 537+0.32
ONL/EZ 3.90+0.83 4.22 +£0.67
EZ/RPE 331+0.77 3.74+0.82
RPE/BM 3.52+1.00 3.46+0.94
Overall 4.09 +1.34 411+ 1.16

As another test of performance for the algorithm presented here, we also compared our
results to those obtained with our previous method, which was based exclusively on the graph
search algorithm [20]. The comparisons of the segmentation accuracy of peripapillary retinal
boundaries is shown in Table 2.

Table 2. Comparison of the peripapillary retinal boundaries segmentation

Healthy Glaucoma
NFL/GCL All layers NFL/GCL All layers
Only graph search 9.34+ 1.35 um 478 £3.51 um 1426 £3.73 um 11.45+7.84 um
With neural 6.42+0.36 um 4.09 +1.34 pm 6.64+0.27 um 411+1.16 pm
network
P-Value 0.006 0.09 0.004 0.002

Through Table 2, it is clear that the segmentation accuracy and stability were both improved
after combining the neural network with the classic graph search.

3.3 Neural network analysis

Inside the neural network, the addition of the atrous-convolution layer in each atrous-block and
the global block greatly improved the performance of the neural networks. In order to further
analyze the neural network design, we compared the validation accuracy (based on DSC) of the
peripapillary retinal layers segmentation between the four architectures below: original U-Net,
U-Net + global block, U-Net + cascaded atrous-block, and U-Net + global block + cascaded
atrous-block (proposed) (Table 3). Clearly, adding the cascaded atrous-convolution layers in
the down and up sampling towers and global block at the end of the network critically improved
the convergence of the neural network. In addition, the validation accuracies of the healthy and
glaucoma data based on the inputs using only one channel (the middle one) instead of the 5
used in our algorithm were 84.11% and 83.53% respectively. These accuracies were about 2%
lower than the accuracies shown in the last column of Table 3 which proved the five channels
input design was effective.

Table 3. Comparison of the validation accuracy between different architectures

Original U-Net U-Net + global U-Net + cascaded ~ U-Net + global block + cascaded

block atrous-block atrous-block (proposed)
Healthy 23.14% 62.52% 81.79% 86.47%
Glaucoma 21.87% 61.26% 79.92% 85.31%

Figure 10 shows example feature maps learned by the network in the normal convolution
layers of the global block. It is clear that in each map the network is learning different retinal
layers, as each map highlights specific layers or combinations thereof. The result of each map
then yields a complete segmentation.
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Fig. 10. The sixteen feature maps of normal layers in the Global block.

4. Discussion

The structure inside the optic disc, layer distortion near the optic disc, and vessel shadows
constitute three major difficulties for peripapillary retinal boundaries segmentation. First, the
optic disc needs to be segmented before the peripapillary retinal boundaries segmentation due
to its unique anatomical structure. We solved this challenge by utilizing a geometric
reorientation (diametral B-frames) and training a neural network on this more amenable
geometry. The generated diametral B-frames have a high degree of structural consistency,
which greatly increased the segmentation accuracy and stability of the optic disc boundary. In
addition, the smoothing method that conformed to the anatomical features of optic disc also
guaranteed the fidelity of the boundary. In the peripapillary retinal boundaries segmentation
stage, the reason of not using diametral B-frames was that the diametral B-frames have the
same directions with large vessels. The large vessel shadows could hardly influence the
segmentation of single EZ + RPE layer but will influence the segmentation accuracy of six
adjacent layers.

For the network architecture, the atrous-convolution layers and global block in the neural
network could capture both local and global information at each pixel. The combination of the
input data and neural network used in the design guaranteed that the peripapillary retinal
boundaries segmentation would not be influenced by either disc distortion or vessel shadows.

Though the segmentation accuracy was greatly improved by using the neural network,
limitations were also obvious. The performance of this method was limited by the depth and
breadth of the training data set. In order to use this method on other OCT devices with different
scan patterns or data from patients with different eye diseases, the training data set would need
to be expanded. However, the complexity of the network architecture should be sufficient to
learn either new pathologies or instruments, since even in these situations the OCT scans have
nearly the same overall structure. In a future study, this method will be used on an expanded
training data set to broaden its capabilities.

5. Conclusion

We combined a neural network with the traditional graph search method to segment both the
optic disc and peripalliary retina boundaries in an optic disc centered volumetric OCT scan.
The addition of the neural network greatly improved both segmentation accuracy and stability.
The quantified tissue information, especially the NFL thickness and analysis of capillary
plexuses, have the potential to pose a significant improvement in the diagnosis and early
detection of glaucoma.
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